Wake Vortex Tracking Using a 35 GHz Pulsed Doppler Radar

Robert T. Neece - NASA Langley Research Center,
Charles L. Britt, Joseph H. White, and Chi Nguyen RTI International,
Ashok Mudukutore,
And Bill Hooper – Phase IV Systems

Introduction

- Aircraft spacings are an important factor in airport capacity
- Current spacings
 - Designed to provide safe separations regardless of conditions
 - Based largely on weight classifications
 - Considered conservative under most conditions

Current Separation Criteria

Following Aircraft	Leading Aircraft				
	Small	Large	B757	Heavy	
Small	2.5	4	5	6	
Large	2.5	2.5	4	5	
Heavy	2.5	2.5	4	4	

Small ≤ 41,000 lb Maximum Gross Takeoff Weight (MGW)

 $41,000 \text{ lb} < \text{Large} \le 255,000 \text{ lb MGW}$

Heavy > 255,000 lb MGW

2.5 nm separation increased to 3 nm when runway occupancy time is > 50 sec

Remote Sensors for Vortex Separation System Development

- NASA, FAA, and international organizations seek to develop dynamic vortex separation systems
- Lidar has been utilized as a vortex sensor in clear air
- A 35 GHz radar has been developed as a complimentary low-visibility sensor

Radar System Description

- 35 GHz (ka band);
- Parabolic antenna, Cassegrain feed, 58 dBi gain;
- Antenna scan rate of 1 to 10 degrees/sec;
- Beam width of 0.185° in azimuth (10m cross range @ 3 km)
- 500 W peak power transmitter for developmental testing;
- 25 KHz and 12.5 KHz pulse repetition frequencies (PRF);
- Unambiguous ranges of 6 km and 12 km;
- 128 range cells and 512 Doppler frequencies;
- Optional, programmable pulse compression up to a 128-bit sequence;
- Pulse length from 5m to 640m

Detection and Resolution

- Detection requires sensing the velocity of hydrometeors in the vortices
- Spacial resolution is important to locate the cores and measure circulation
- Sensors respond to axial winds

Vortex Rotation

Range Resolution

Radar Simulation Studies

- Purpose:
 - Update models
 - Implement Lidar-like processing
 - Study effects of pulse compression
 - Examine an example field site
- ADWRS Airborne Doppler Weather Radar System model
- VR Vortex Radar model includes pulse compression

Detection Studies

- Compare
 - Short pulses
 - Long pulses with Lidar-like processing
 - Pulse compression
- Examine spectra to identify best method
 - Detection
 - Core location

Table: Cases Run

Range Res. (m)	Barker Code	Compressed		Uncompressed/Actual	
		Length (m)	Time (µs)	Length (m)	Time (µs)
4.9	4-Bit	4.9	0.0325	19.5	0.130
5.0	7-Bit	5.0	0.0330	34.7	0.231
5.0	13-Bit	5.0	0.0330	64.5	0.430
5.0	69-Bit ¹	5.0	0.0330	345	2.30
4.9	88-Bit ¹	4.9	0.0330	435	2.90
15	None	-	-	15.0	0.100
19.5	None	-	-	19.5	0.130
34.7	None	-	-	34.7	0.231
50	None	-	-	49.0	0.330
435	None	-	-	435	2.90

¹ Sequence of Barker codes

Lidar-like Processing

Velocity Spectra and

Resolution volume

- Scatterers moving with vortex + ambient velocity
- Scatterers moving with ambient velocity

15m Uncompressed, Peak Detection

50m Uncompressed

Lidar-like processing

50m Uncompressed, Peak Detection

Pulse Compression

- Expected advantages
 - Higher average power for better detection range
 - Short range-resolution for good circulation estimates and core location
- Disadvantages
 - System complexity
 - Signal leakage between range cells

Pulse Compression vs. Short Pulse

Short Code: Uncompressed vs. 7-Bit Barker (35m)

Detection Summary

- Lidar-like processing is not productive
- Long pulse-compression codes allow significant leakage of ambient velocity
- Short uncompressed pulses provide good detection
- Short pulse-compression codes can extend range and sensitivity

Siting Factors – an Example

- San Francisco International (SFO)
- Limited open space
- Urban location
- Partially surrounded by water
- Suitable sites not on airport property
- Multiple site visits necessary

SFO Map

Site Particulars

- Runways 28L and 28R receive much arriving traffic
- Site perpendicular to approach
- Range 1600m, mostly over water
- Problems
 - Beam grazes ground/water
 - Small angular scan range
 - Degraded angular resolution

Table 2. Cases Run

Range (m)	Pulse Width (ns)	Range Resolution (m)	Reflectivity (dBZ)
900	33	5	15
900	66	10	15
900	99	15	15
1600	66	10	15
1600	99	15	15
900	66	10	-13
1600	66	10	-13

Baseline: 900m, 66ns pulse (10m), 15 dBZ reflectivity

1600m range, 10m vs. 15m range resolution, 15 dBZ reflectivity

Sharper range resolution provides better core location and circulation estimates.

Marginal Conditions: 1600m vs. 900m range

1600m 900m

-13 dBZ reflectivity, 66ns pulse (10m)

Conclusions

- 35 GHz radar has the potential to function as a low-visibility sensor for wake vortices
- Simulations predict good detection in medium to heavy fog to 2000m
- Peak detection and good range resolution are required
- Short pulse-compression codes can be used to extend range and sensitivity